IV B.Tech - I Semester – Regular Examinations – October - 2017

COMPUTER METHODS IN POWER SYSTEMS (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours

Max. Marks: 70

PART - A

Answer *all* the questions. All questions carry equal marks

 $11 \ge 22$

1.

- a) What is incidence matrix?
- b) Define oriented graph and tree.
- c) State the assumptions in short circuit studies.
- d) Write the equation to find the elements new bus impedance matrix after eliminating nth row and column in an n x n bus impedance matrix.
- e) What is the need for load flow study?
- f) What are the merits of Fast decoupled method?
- g) What are the advantages of N-R load flow method?
- h) What are different states in security analysis?
- i) Express line outage distribution factor.
- j) State the method to improve transient stability.
- k) List out different numerical methods used to solve swing equation.

PART – B

Answer any *THREE* questions. All questions carry equal marks. $3 \ge 16 = 48 \text{ M}$

- 2. a) Derive the loop admittance matrix from bus impedance matrix. 8 M
 - b) Verify the following relations for the network shown in Figure-1.8 M
 - i) $A_b K^t = U$ ii) $C_b = -B_1^t$

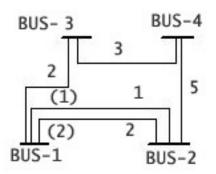


Figure-1

- 3. a) Derive the expressions for fault currents and voltages during SLG fault at pth bus in an n-bus system.
 8 M
 - b) Explain the algorithm for the modification of Z bus on addition of a branch.
 8 M
- 4. The load flow data for a three bus system is given in Tables I and II. Taking bus I as slack bus, determine the voltages of

the various buses at the end of first iteration stating with a flat voltage profile for all buses except slack bus using Gauss –Seidel method with acceleration factor 1.6

16 M

Bus code	Impedance	Bus code	Line charging	
			admittance y _{pq} /2	
1-2	0.06+j0.18	1	j0.05	
1-3	0.02+j0.06	2	j0.06	
2-3	0.04+j0.12	3	j0.05	

Table-I Impedances for sample system

Table II Assumed bus voltages generation and load

Bus code	Assumed	Generation		Load	
	Voltages	MW p.u.	MVAr	MW p.u.	MVAr
			p.u.		p.u.
1	1.06+j0.0	0.0	0.0	0.0	0.00
2	1.0+j0.0	0.2	0.0	0.0	0.00
3	1.0+j0.0	0.0	0.0	0.6	0.25

- 5. a) Discuss about network sensitivity factor methods used in contingency selection.8 M
 - b) Draw the flow chart for contingency selection technique and briefly explain it.
 8 M

6. An alternator rated for 100 MVA supplies 100 MW to an infinite bus through a line of reactance 0.08 p.u. on 100 MVA base. The machine has a transient reactance of 0.2 p.u. and its inertia constant is 4.0 p.u. on 100 MVA base. Taking the infinite bus voltage as reference, current supplied by the alternator is (1.0 – j 0.6375) p.u. Calculate the torque angle and speed of the alternator for a period of 0.14 sec. When there is a three phase fault at the machine terminals and the fault is cleared in 0.1 sec. Use Modified Euler's method with a time increment of 0.02 sec.